Washtenaw Community College Comprehensive Report

WAF 232 Semi-Automatic Welding Processes Effective Term: Fall 2016

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: Welding and Fabrication **Discipline:** Welding and Fabrication

Course Number: 232 Ora Number: 14600

Full Course Title: Semi-Automatic Welding Processes Transcript Title: Semi-Automatic Weld Processes

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog , Time Schedule , Web Page

Reason for Submission: Course Change

Change Information:

Course discipline code & number

Course title

Course description
Outcomes/Assessment
Objectives/Evaluation

Other:

Rationale: This course is being updated for the new WAF program and to meet the current needs of the welding industry.

Proposed Start Semester: Fall 2016

Course Description: In this course, students enhance their welding skills in the Gas Metal Arc Welding (GMAW), Flux Cored Arc Welding (FCAW) and Metal Cored Arc Welding (MCAW) processes by performing advanced welding techniques most commonly used in the manufacturing, automotive and construction industries. Other topics include filler metal classification and specifications, codes and standards set forth by the American Welding Society (AWS). This course contains material previously taught in WAF 288.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 30 Student: 30

Lab: Instructor: 90 Student: 90 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 120 Student: 120

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 1

Requisites

Prerequisite

WAF 126 minimum grade "C"

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Properly set and adjust welding equipment and choose appropriate filler material to match the base metals being welded.

Assessment 1

Assessment Tool: Lab assignment

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Skill Checklist with rubric

Standard of success to be used for this assessment: 80% of students will score 80%

or higher.

Who will score and analyze the data: Departmental faculty

2. Perform surfacing, groove, tee, lap, corner and edge welds in the flat, horizontal, vertical and overhead positions on carbon steel, stainless steel and aluminum.

Assessment 1

Assessment Tool: Welded samples

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in

accordance with applicable AWS welding codes.

Standard of success to be used for this assessment: 80% of students will create

passing welds in accordance with AWS welding codes. Who will score and analyze the data: Departmental faculty

3. Perform a weld on a groove, lap and tee joint in the GMAW pulse and spray transfers.

Assessment 1

Assessment Tool: Welded samples

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in

accordance with applicable AWS welding codes.

Standard of success to be used for this assessment: 80% of students will create

passing welds in accordance with AWS welding codes. Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Apply safe work practices when assembling equipment for the GMAW, FCAW and MCAW processes.
- 2. Inspect work area and welding equipment for any safety hazards prior to welding.
- 3. Select correct welding gas and filler wire for base material being welded.
- 4. Properly setup the welding machine to weld carbon steel, stainless steel and aluminum.

- 5. Perform surfacing (pad) welds on carbon steel, stainless steel and aluminum in the flat, horizontal, vertical and overhead positions on plate using the GMAW, FCAW and MCAW processes.
- 6. Weld a groove, tee, lap, corner and edge in the flat, horizontal, vertical and overhead positions on carbon steel plate in the GMAW, FCAW and MCAW processes.
- 7. Run a bead using cross hatching technique with hard surfacing filler material on carbon steel plate using the FCAW process.
- 8. Weld a groove, tee, lap, corner and edge in the flat, horizontal, vertical and overhead positions on carbon steel, stainless steel and aluminum sheet and plate in the GMAW process.
- 9. Perform a weld on plate, in any position, in accordance with a Weld Procedure Specification (WPS) to achieve certification.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Level III classroom

Reviewer	Action	<u>Date</u>
Faculty Preparer:		
Amanda Scheffler	Faculty Preparer	Aug 30, 2015
Department Chair/Area Director:		
Glenn Kay II	Recommend Approval	Aug 30, 2015
Dean:		
Brandon Tucker	Recommend Approval	Oct 06, 2015
Curriculum Committee Chair:		
Kelley Gottschang	Recommend Approval	Nov 30, 2015
Assessment Committee Chair:		
Michelle Garey	Recommend Approval	Dec 10, 2015
Vice President for Instruction:		
Michael Nealon	Approve	Dec 14, 2015