Washtenaw Community College Comprehensive Report

WAF 231 Gas Tungsten Arc Welding (GTAW) Effective Term: Spring/Summer 2022

Course Cover

College: Advanced Technologies and Public Service Careers Division: Advanced Technologies and Public Service Careers Department: Welding and Fabrication Discipline: Welding and Fabrication Course Number: 231 Org Number: 14600 Full Course Title: Gas Tungsten Arc Welding (GTAW) Transcript Title: Gas Tungsten Arc Welding-GTAW Is Consultation with other department(s) required: No Publish in the Following: College Catalog , Time Schedule , Web Page Reason for Submission: Three Year Review / Assessment Report Change Information: Consultation with all departments affected by this course is required.

Outcomes/Assessment

Rationale: Three-year syllabus review

Proposed Start Semester: Fall 2022

Course Description: In this course, students will further enhance their Gas Tungsten Arc Welding (GTAW) skills by performing advanced welding techniques most commonly used in the aerospace, manufacturing and automotive industries. Materials, such as, carbon steel, aluminum, stainless steel, copper and cast iron will be used. Multiple passes will be required using positions such as 2F/G, 3F/G, 4F/G, 5F/G, 6F/G on sheet, plate and pipe. Students will apply filler metal classification and specifications, codes and standards set forth by the American Welding Society (AWS).

Course Credit Hours

Variable hours: No Credits: 4 Lecture Hours: Instructor: 30 Student: 30 Lab: Instructor: 90 Student: 90 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 120 Student: 120 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math Level 1

Requisites

Prerequisite

WAF 125 minimum grade "C"

General Education

Request Course Transfer

Proposed For:

Ferris State University Other : Pennsylvania College of Technology

Student Learning Outcomes

1. Perform surface, groove, tee, lap, corner and edge welds in the flat, horizontal, vertical and overhead positions on plate.

Assessment 1

Assessment Tool: Outcome-related welded samples Assessment Date: Fall 2022 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: The welds will be scored as pass or fail in accordance with applicable AWS welding codes. Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS welding codes. Who will score and analyze the data: Departmental faculty

2. Perform welds on carbon steel, stainless steel and aluminum on pipe or tube in the 2F/G, 5F/G and 6F/G positions using the GTAW process.

Assessment 1

Assessment Tool: Outcome-related welded samples Assessment Date: Fall 2022 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: The welds will be scored as pass or fail in accordance with applicable AWS welding codes. Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS welding codes. Who will score and analyze the data: Departmental faculty

3. Perform a corner, groove and tee weld on cast iron and copper in the horizontal and vertical positions. Assessment 1

Assessment Tool: Outcome-related welded samples Assessment Date: Fall 2022 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: The welds will be scored as pass or fail in accordance with applicable AWS welding codes. Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS welding codes. Who will score and analyze the data: Departmental faculty

4. Identify both practical and theoretical aspects of the Gas Tungsten Arc Welding process.

Assessment 1

Assessment Tool: Outcome-related test questions Assessment Date: Fall 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 80% of the students will score 80% or higher

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Inspect work area and welding equipment for any safety hazards prior to welding.
- 2. Select correct welding gas and filler wire for base material being welded.
- 3. Properly set up the welding machine to weld carbon steel, stainless steel, copper, cast iron and aluminum.
- 4. Perform surfacing (pad) welds on carbon steel, stainless steel and aluminum in the flat, horizontal, vertical and overhead positions on plate.
- 5. Weld a groove, tee, lap, corner and edge weld in the flat, horizontal, vertical and overhead positions on carbon steel, stainless steel, and aluminum sheet metal.
- 6. Weld carbon steel, stainless steel and aluminum pipe or tube in the 2F/G, 5F/G and 6F/G positions.
- 7. Weld a corner, groove and tee joint on cast iron and copper in the horizontal and vertical positions.
- 8. Run a bead using a cross hatching technique with hard surfacing filler material on carbon steel plate.
- 9. Weld a plate, pipe or tube, in any position in accordance with a Weld Procedure Specification (WPS) to achieve certification.
- 10. Discuss the practical uses of GTAW.
- 11. Identify appropriate applications for GTAW.
- 12. Recognize the advantages and disadvantages of GTAW based on the material or application.

New Resources for Course

Course Textbooks/Resources

Textbooks

Hoffman . *Welding: Second Custom Edition for Washtenaw Community College*, 2 ed. Pearson , 2017, ISBN: 9781323508350.

Manuals

Periodicals Software

Equipment/Facilities

Level III classroom

<u>Reviewer</u>	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Alexander Pazkowski	Faculty Preparer	Aug 13, 2021
Department Chair/Area Director:		
Bradley Clink	Recommend Approval	Aug 16, 2021
Dean:		
Jimmie Baber	Recommend Approval	Aug 19, 2021
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Dec 07, 2021
Assessment Committee Chair:		

12/17/21, 12:40 PM	https://www.curricunet.com/washtenaw/reports/course_out	line_HTML.cfm?courses_id=11160
Shawn Deron	Recommend Approval	Dec 08, 2021
Vice President for Instr	uction:	
Kimberly Hurns	Approve	Dec 08, 2021

WAF 231 Gas Tungsten Arc Welding (GTAW) Effective Term: Fall 2016

Course Cover

Division: Advanced Technologies and Public Service Careers Department: Welding and Fabrication Discipline: Welding and Fabrication Course Number: 231 Org Number: 14600 Full Course Title: Gas Tungsten Arc Welding (GTAW) Transcript Title: Gas Tungsten Arc Welding-GTAW Is Consultation with other department(s) required: No Publish in the Following: College Catalog , Time Schedule , Web Page Reason for Submission: Three Year Review / Assessment Report Change Information: Course discipline code & number Course title

Course description Outcomes/Assessment Objectives/Evaluation Other:

Rationale: Updating course to meet new program requirements.

Proposed Start Semester: Fall 2016

Course Description: In this course, students further enhance their Gas Tungsten Arc Welding (GTAW) skills by performing advanced welding techniques most commonly used in the aerospace, manufacturing and automotive industries. Materials, such as, carbon steel, aluminum, stainless steel, copper and cast iron will be used. Multiple passes will be required using positions such as 2F/G, 3F/G, 4F/G, 5F/G, 6F/G on sheet, plate and pipe. Students will apply filler metal classification and specifications, codes and standards set forth by the American Welding Society (AWS). This course contains material previously taught in WAF 215.

Course Credit Hours

Variable hours: No Credits: 4 Lecture Hours: Instructor: 30 Student: 30 Lab: Instructor: 90 Student: 90 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 120 Student: 120 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 1

<u>Requisites</u> Prereguisite

WAF 125 minimum grade "C"

General Education

Request Course Transfer

Proposed For:

Ferris State University Other : Pennsylvania College of Technology

Student Learning Outcomes

1. Perform surface, groove, tee, lap, corner and edge welds in the flat, horizontal, vertical and overhead positions on plate.

Assessment 1

Assessment Tool: Welded samples Assessment Date: Fall 2019 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: The welds will be scored as pass or fail in accordance with applicable AWS welding codes. Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS welding codes. Who will score and analyze the data: Departmental faculty

2. Perform welds on carbon steel, stainless steel and aluminum on pipe or tube in the 2F/G, 5F/G and 6F/G positions using the GTAW process.

Assessment 1

Assessment Tool: Welded samples Assessment Date: Fall 2019 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: The welds will be scored as pass or fail in accordance with applicable AWS welding codes. Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS welding codes.

Who will score and analyze the data: Departmental faculty

3. Perform a corner, groove and tee weld on cast iron and copper in the horizontal and vertical positions.

Assessment 1

Assessment Tool: Welded Samples

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in accordance with applicable AWS welding codes.

Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS welding codes.

Who will score and analyze the data: Departmental faculty

Course Objectives

1. Inspect work area and welding equipment for any safety hazards prior to welding.

- 2. Select correct welding gas and filler wire for base material being welded.
- 3. Properly set up the welding machine to weld carbon steel, stainless steel, copper, cast iron and aluminum.
- 4. Perform surfacing (pad) welds on carbon steel, stainless steel and aluminum in the flat, horizontal, vertical and overhead positions on plate.
- 5. Weld a groove, tee, lap, corner and edge weld in the flat, horizontal, vertical and overhead positions on carbon steel, stainless steel, and aluminum sheet metal.
- 6. Weld carbon steel, stainless steel and aluminum pipe or tube in the 2F/G, 5F/G and 6F/G positions.
- 7. Weld a corner, groove and tee joint on cast iron and copper in the horizontal and vertical positions.
- 8. Run a bead using a cross hatching technique with hard surfacing filler material on carbon steel plate.
- 9. Weld a plate, pipe or tube, in any position in accordance with a Weld Procedure Specification (WPS) to achieve certification.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Level III classroom

Reviewer	Action	<u>Date</u>
Faculty Preparer:		
Amanda Scheffler	Faculty Preparer	Aug 30, 2015
Department Chair/Area Director:		
Glenn Kay II	Recommend Approval	Aug 30, 2015
Dean:		
Brandon Tucker	Recommend Approval	Oct 06, 2015
Curriculum Committee Chair:		
Kelley Gottschang	Recommend Approval	Dec 07, 2015
Assessment Committee Chair:		
Michelle Garey	Recommend Approval	Dec 10, 2015
Vice President for Instruction:		
Michael Nealon	Approve	Dec 14, 2015