Washtenaw Community College Comprehensive Report

MTH 192 Calculus II Effective Term: Spring/Summer 2024

Course Cover

College: Math, Science and Engineering Tech **Division:** Math, Science and Engineering Tech **Department:** Math & Engineering Studies **Discipline:** Mathematics **Course Number:** 192 Org Number: 12200 Full Course Title: Calculus II **Transcript Title:** Calculus II Is Consultation with other department(s) required: No Publish in the Following: College Catalog, Time Schedule, Web Page **Reason for Submission: Change Information:** Other: Rationale: Master syllabus update submitted with assessment report. Updating assessment population. **Proposed Start Semester:** Fall 2023 **Course Description:** In this course, students will explore the application of integration, integration techniques, L'Hôpital's Rule, numerical integration, improper integrals, infinite series, Taylor series, parametric equations and polar coordinates. A graphing calculator is required. See the time schedule for current brand and model. This is the second semester course in single variable calculus. **Course Credit Hours** Variable hours: No

Variable hours: No Credits: 4 Lecture Hours: Instructor: 60 Student: 60 Lab: Instructor: 0 Student: 0 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 60 Student: 60 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

<u>College-Level Reading and Writing</u>

College-level Reading & Writing

College-Level Math Level 7

Requisites Prerequisite MTH 191 minimum grade "C"

General Education

Degree Attributes

Assoc in Applied Sci - Area 3 Assoc in Science - Area 3 Assoc in Arts - Area 3 MACRAO Science & Math **Michigan Transfer Agreement - MTA** MTA Mathematics

Request Course Transfer

Proposed For:

Eastern Michigan University Ferris State University Grand Valley State University Jackson Community College Kendall School of Design (Ferris) Lawrence Tech Michigan State University Oakland University University of Detroit - Mercy University of Michigan Wayne State University Western Michigan University

Student Learning Outcomes

1. Solve a variety of applied integration problems.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions Assessment Date: Winter 2026 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: A random stratified sample of 25% of the students in each section How the assessment will be scored: Departmentally-developed rubric Standard of success to be used for this assessment: 70% of students who take the final assessment will score at least 70% on the common exam questions Who will score and analyze the data: Departmental faculty

2. Evaluate limits of functions and sequences.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions Assessment Date: Winter 2026 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: A random stratified sample of 25% of the students in each section How the assessment will be scored: Departmentally-developed rubric Standard of success to be used for this assessment: 70% of students who take the final assessment will score at least 70% on the common exam questions Who will score and analyze the data: Departmental faculty

3. Determine the convergence or divergence of an infinite series using an appropriate test for convergence.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions

Assessment Date: Winter 2026

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: A random stratified sample of 25% of the students in each section

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: Departmental faculty

4. Derive the Taylor Series for a given function, including the interval of convergence.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions Assessment Date: Winter 2026

Assessment Date: White 2020 Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: A random stratified sample of 25% of the students in each section

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final assessment will score at least 70% on the common exam questions

Who will score and analyze the data: Departmental faculty

5. Solve a variety of differentiation and integration problems in parametric and polar form.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions

Assessment Date: Winter 2026

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: A random stratified sample of 25% of the students in each section

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final assessment will score at least 70% on the common exam questions

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Calculate the volume of a solid of revolution using the washer and shell methods.
- 2. Calculate arc lengths and surface areas in rectangular coordinates.
- 3. Evaluate integrals using integration by parts.
- 4. Evaluate integrals using trigonometric identities and u-substitutions like u=sinx, du=cosx dx.
- 5. Evaluate integrals using trigonometric substitution involving right triangles.
- 6. Evaluate integrals using partial fractions.
- 7. Evaluate limits of indeterminate forms using L'Hôpital's rule.
- 8. Identify and evaluate improper integrals.
- 9. Determine the convergence or divergence of geometric and p-series.
- 10. Determine the convergence or divergence of series using the integral, limit comparison and direct comparison tests.
- 11. Determine the convergence or divergence of alternating series.
- 12. Determine the convergence or divergence of series using the ratio and root tests.
- 13. Graph parametric and polar equations.
- 14. Calculate the equation of the tangent line, and the concavity of a plane curve at a given point.
- 15. Calculate the area bounded by the graph of a polar equation.
- 16. Calculate arc lengths and surface areas in parametric form.

17. Calculate arc lengths and surface areas in polar coordinates.

New Resources for Course

Course Textbooks/Resources

Textbooks Strang & Herman. Calculus Volume II, ed. OpenStax, 2016
Manuals Periodicals
Software <u>MyOpenMath</u>. MyOpenMath, MyOpenMath ed. MyOpenMath is an online course management and assessment system for mathematics and other quantitative fields. MyOpenMath's focus is providing rich algorithmically generated assessment to

Equipment/Facilities

Level III classroom Testing Center Computer workstations/lab Data projector/computer

support the use of free, open textbooks.

Reviewer	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Clifford Taylor	Faculty Preparer	May 31, 2023
Department Chair/Area Director	:	
Nichole Klemmer	Recommend Approval	Jun 07, 2023
Dean:		
Tracy Schwab	Recommend Approval	Jun 08, 2023
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Apr 03, 2024
Assessment Committee Chair:		
Jessica Hale	Recommend Approval	Apr 10, 2024
Vice President for Instruction:		
Brandon Tucker	Approve	Apr 16, 2024

Washtenaw Community College Comprehensive Report

MTH 192 Calculus II Effective Term: Winter 2022

Course Cover

College: Math, Science and Engineering Tech Division: Math, Science and Engineering Tech Department: Math & Engineering Studies **Discipline:** Mathematics **Course Number: 192** Org Number: 12200 Full Course Title: Calculus II Transcript Title: Calculus II Is Consultation with other department(s) required: No Publish in the Following: College Catalog, Time Schedule, Web Page Reason for Submission: Three Year Review / Assessment Report **Change Information:** Consultation with all departments affected by this course is required. **Outcomes/Assessment** Rationale: Update after assessment report. Proposed Start Semester: Winter 2022 Course Description: This is the standard second semester single variable calculus course. Students

explore topics including applications of integration, integration techniques, L'Hôpital's Rule, numerical integration, improper integrals, infinite series, Taylor series, parametric equations and polar coordinates. A graphing calculator is required. See the time schedule for current brand and model.

Course Credit Hours

Variable hours: No Credits: 4 Lecture Hours: Instructor: 60 Student: 60 Lab: Instructor: 0 Student: 0 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 60 Student: 60 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites Prerequisite MTH 191 minimum grade "C"

General Education

Degree Attributes Assoc in Applied Sci - Area 3 Assoc in Science - Area 3 Assoc in Arts - Area 3 MACRAO Science & Math Michigan Transfer Agreement - MTA MTA Mathematics

Request Course Transfer

Proposed For:

Eastern Michigan University Ferris State University Grand Valley State University Jackson Community College Kendall School of Design (Ferris) Lawrence Tech Michigan State University Oakland University University of Detroit - Mercy University of Michigan Wayne State University Western Michigan University

Student Learning Outcomes

1. Solve a variety of applied integration problems.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions Assessment Date: Winter 2024 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Departmentally-developed rubric Standard of success to be used for this assessment: 70% of students who take the final assessment will score at least 70% on the common exam questions Who will score and analyze the data: A subcommittee of the Math 192 instructors

2. Evaluate limits of functions and sequences.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions Assessment Date: Winter 2024 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Departmentally-developed rubric Standard of success to be used for this assessment: 70% of students who take the final assessment will score at least 70% on the common exam questions Who will score and analyze the data: A subcommittee of the Math 192 instructors

3. Determine the convergence or divergence of an infinite series using an appropriate test for convergence.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions

Assessment Date: Winter 2024

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

4. Derive the Taylor Series for a given function, including the interval of convergence.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions Assessment Date: Winter 2024 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Departmentally-developed rubric Standard of success to be used for this assessment: 70% of students who take the final assessment will score at least 70% on the common exam questions Who will score and analyze the data: A subcommittee of the Math 192 instructors

5. Solve a variety of differentiation and integration problems in parametric and polar form.

Assessment 1

Assessment Tool: Outcome-related common departmental exam questions

Assessment Date: Winter 2024

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

Course Objectives

1. Calculate the volume of a solid of revolution using the washer and shell methods.

- 2. Calculate arc lengths and surface areas in rectangular coordinates.
- 3. Evaluate integrals using integration by parts.
- 4. Evaluate integrals using trigonometric identities and u-substitutions like u=sinx, du=cosx dx.
- 5. Evaluate integrals using trigonometric substitution involving right triangles.
- 6. Evaluate integrals using partial fractions.
- 7. Evaluate limits of indeterminate forms using L'Hôpital's rule.
- 8. Identify and evaluate improper integrals.
- 9. Determine the convergence or divergence of geometric and p-series.
- 10. Determine the convergence or divergence of series using the integral, limit comparison and direct comparison tests.
- 11. Determine the convergence or divergence of alternating series.
- 12. Determine the convergence or divergence of series using the ratio and root tests.
- 13. Graph parametric and polar equations.
- 14. Calculate the equation of the tangent line, and the concavity of a plane curve at a given point.
- 15. Calculate the area bounded by the graph of a polar equation.
- 16. Calculate arc lengths and surface areas in parametric form.
- 17. Calculate arc lengths and surface areas in polar coordinates.

New Resources for Course

Course Textbooks/Resources

Textbooks Larson & Edwards. *Calculus Early Transcendental Functions*, 7th ed. Brooks/Cole, 2019 Manuals Periodicals Software

Equipment/Facilities

Level III classroom Testing Center Computer workstations/lab Data projector/computer

<u>Reviewer</u>	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Clifford Taylor	Faculty Preparer	Aug 02, 2021
Department Chair/Area Director:		
Lawrence David	Recommend Approval	Aug 04, 2021
Dean:		
Victor Vega	Recommend Approval	Aug 10, 2021
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Nov 12, 2021
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Nov 13, 2021
Vice President for Instruction:		
Kimberly Hurns	Approve	Nov 15, 2021